MATEMATİK BİR SEVGİDİR
e-okul  
  Resimler
  HMT ORTAOKULU
  Kıreli İlköğretim Okulu
  YAKUPOĞLU İLKÖĞRETİM OKULU
  Şükrü Acar İlköğretim Okulu
  Akyurt ÇPL
  Akyurt ÇPL sınavlar, sorular
  Prof.Dr. Nusret Fişek Anadolu Sağlık Meslek Lisesi
  ÖDEV ARAMA
  DOĞADAKİ MATEMATİKLER
  ALTIN ORAN
  ASAL SAYILAR
  Özel Dik Üçgenler
  Üçgenlerde Benzerlik
  Eşkenar ve İkizkenar Üçgen
  Öklit
  PİSAGOR
  PRİZMALAR
  Piramit,Koni,Küre
  Platonik Cisimler
  Perspektif
  Pİ SAYISI
  Sıfır Rakamı
  Cebir Karoları
  HİSTOGRAM
  PİRİ REİS
  Roma Rakamları
  Cevap Anahtarı
  ÖĞRETMEN DÖKÜMANLARI
  İlginç Matematik Bilgileri
  Matematik Sözlüğü
  İLGİNÇ BİLGİLER
  Şaşı Bak Şaşı Gör(Stereogram)
  GÖZ YANILMALARI
  SAĞLIK VE BESLENME
  OYUNLAR
  Video-Müzik
  S P O R S A Y F A S I
  DUYURULAR
  HABERLER gündemden
  Forum
  PLANLAR
  ZÜMRE TOPLANTISI
  Taban Puanlar ( SBS sonucu)
  ALES
  ÖSS
  DPY ve BURSLULUK
  LGS,OKS,SBS
  ALS( Askeri Liseler Sınavı)
  KPSS (Kamu Per.Seçme S.)
  ÖSS Taban Puanları
  100 Temel Eser
  ZEKA SORULARI
  ANA SAYFA
  Ziyaretçi defteri
  İletişim
Eşkenar ve İkizkenar Üçgen

                      EŞKENAR ÜÇGEN

1. Eşkenar üçgende bütün açıortay, kenarortay yükseklikler çakışık ve hepsinin uzunlukları eşittir.

nA = nB = nC = Va = Vb = Vc = ha = hb = hc 

2. Eşkenar üçgenin bir kenarına a dersek yük seklik 

Bu durumda eşkenar üçgenin alanı 

3. Eşkenar üçgenin içindeki herhangi bir noktadan kenarlara çizilen dik uzunlukların toplamı, eşkenar üçgene ait yüksekliği verir.

Bir kenarı a olan eşkenar üçgende;

 

4. Eşkenar üçgenin içindeki herhangi bir noktadan kenarlara çizilen paralellerin toplamı bir kenar uzunluğuna eşittir.

Bir kenarı a olan ABC eşkenar üçgeninde

                     İKİZKENAR ÜÇGEN

İkizkenar üçgenin tepe açısından tabanına çizilen yükseklik, hem açıortay, hem de kenarortaydır.

1. Bir üçgende, açıortay aynı zamanda yükseklik ise bu üçgen ikizkenar üçgendir.

|AB| = |AC|

|BH| = |HC|

m(B) = m(C)

2. Bir üçgende, açıortay aynı zamanda kenarortay ise bu üçgen ikizkenar üçgendir.

|AB| = |AC|,

[AH] ^ [BC]

m(B) = m(C)

3. Bir üçgende, yükseklik aynı zamanda kenarortay ise bu üçgen ikizkenar üçgendir.

|AB| = |AC|

m(BAH) = m(HAC)

m(B) = m(C)

4. İkizkenar üçgende ikizkenara ait yükseklikler eşittir. Bu durumda yüksekliklerin kesim noktasının ayırdığı parçalarda eşit olur.

5. İkizkenar üçgende ikizkenara ait kenarortaylar ve kenarortayların kesim noktasının ayırdığı parçalar da birbirine eşittir.

6. İkizkenar üçgende eşit açılara ait açıortaylar da eşittir. Açıortaylar birbirini aynı oranda bölerler.

7. İkizkenar üçgende ikiz olmayan kenar üzerindeki herhangi bir noktadan ikiz kenarlara çizilen dikmelerin toplamı, ikizkenarlara ait yüksekliği verir.

 

|AB| = |AC|  Þ    |LC| = |HP| + |KP|

8. İkizkenar üçgende tabandan ikiz kenarlara çizilen paralellerin toplamı, ikiz kenarların uzunluğuna eşittir.

 
 
  Bu websitesinin sahibi "Top liste" ekstrasını daha aktive etmemiş!  
 
   
Bugün 36 ziyaretçikişi buradaydı
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol